201 research outputs found

    'When I click "ok" I become Sassy – I become a girl.' Young people and gender identity: Subverting the ‘body’ in massively multi-player online role-playing games

    Get PDF
    This article is available open access through the publisher’s website through the link below. Copyright @ 2012 Taylor & Francis.This article explores young people's practices in the virtual spaces of online gaming communities. Based on a five-year ethnographic study of virtual worlds, it considers how young people construct and maintain identities within virtual social systems. In particular, the article discusses digital gender practices and considers the potential that these games offer for their young users to engage in alternate gender identities. We argue that these digital spaces offer spaces for the imagination and can enhance agency and, potentially, resistance. However, digital identity is simultaneously no ‘liberated space’ and it incorporates norms and practices that often mirror those of the material world. We argue that this ‘porosity’ is an important tool through which young people come to understand gender identity

    TRPM7 Provides an Ion Channel Mechanism for Cellular Entry of Trace Metal Ions

    Get PDF
    Trace metal ions such as Zn2+, Fe2+, Cu2+, Mn2+, and Co2+ are required cofactors for many essential cellular enzymes, yet little is known about the mechanisms through which they enter into cells. We have shown previously that the widely expressed ion channel TRPM7 (LTRPC7, ChaK1, TRP-PLIK) functions as a Ca2+- and Mg2+-permeable cation channel, whose activity is regulated by intracellular Mg2+ and Mg2+·ATP and have designated native TRPM7-mediated currents as magnesium-nucleotide–regulated metal ion currents (MagNuM). Here we report that heterologously overexpressed TRPM7 in HEK-293 cells conducts a range of essential and toxic divalent metal ions with strong preference for Zn2+ and Ni2+, which both permeate TRPM7 up to four times better than Ca2+. Similarly, native MagNuM currents are also able to support Zn2+ entry. Furthermore, TRPM7 allows other essential metals such as Mn2+ and Co2+ to permeate, and permits significant entry of nonphysiologic or toxic metals such as Cd2+, Ba2+, and Sr2+. Equimolar replacement studies substituting 10 mM Ca2+ with the respective divalent ions reveal a unique permeation profile for TRPM7 with a permeability sequence of Zn2+ ≈ Ni2+ >> Ba2+ > Co2+ > Mg2+ ≥ Mn2+ ≥ Sr2+ ≥ Cd2+ ≥ Ca2+, while trivalent ions such as La3+ and Gd3+ are not measurably permeable. With the exception of Mg2+, which exerts strong negative feedback from the intracellular side of the pore, this sequence is faithfully maintained when isotonic solutions of these divalent cations are used. Fura-2 quenching experiments with Mn2+, Co2+, or Ni2+ suggest that these can be transported by TRPM7 in the presence of physiological levels of Ca2+ and Mg2+, suggesting that TRPM7 represents a novel ion-channel mechanism for cellular metal ion entry into vertebrate cells

    Slowdown of Antarctic Bottom Water export driven by climatic wind and sea ice changes

    Get PDF
    Antarctic Bottom Water (AABW) is pivotal for oceanic heat and carbon sequestrations on multidecadal-to-millennial timescales. The Weddell Sea contributes nearly a half of global AABW through Weddell Sea Deep Water (WSDW) and denser underlying Weddell Sea Bottom Water (WSBW) that are form on the continental shelves via sea ice production. Here we report an observed 30% reduction of WSBW volume since 1992, with the largest decrease in the densest classes. This is likely driven by a multidecadal reduction in dense water production over southern continental shelf associated with a >40% decline in the sea ice formation rate. The ice production decrease is driven by northerly wind trend, related to a phase transition of the Interdecadal Pacific Oscillation since the early 1990s, superposed by Amundsen Sea Low intrinsic variability. These results reveal key influences on exported AABW to the Atlantic abyss and their sensitivity to large-scale, multidecadal climate variability

    Unsupervised classification identifies coherent thermohaline structures in the Weddell Gyre region

    Get PDF
    The Weddell Gyre is a major feature of the Southern Ocean and an important component of the planetary climate system; it regulates air–sea exchanges, controls the formation of deep and bottom waters, and hosts upwelling of relatively warm subsurface waters. It is characterised by low sea surface temperatures, ubiquitous sea ice formation, and widespread salt stratification that stabilises the water column. Observing the Weddell Gyre is challenging, as it is extremely remote and largely covered with sea ice. At present, it is one of the most poorly sampled regions of the global ocean, highlighting the need to extract as much value as possible from existing observations. Here, we apply a profile classification model (PCM), which is an unsupervised classification technique, to a Weddell Gyre profile dataset to identify coherent regimes in temperature and salinity. We find that, despite not being given any positional information, the PCM identifies four spatially coherent thermohaline domains that can be described as follows: (1) a circumpolar class, (2) a transition region between the circumpolar waters and the Weddell Gyre, (3) a gyre edge class with northern and southern branches, and (4) a gyre core class. PCM highlights, in an objective and interpretable way, both expected and underappreciated structures in the Weddell Gyre dataset. For instance, PCM identifies the inflow of Circumpolar Deep Water (CDW) across the eastern boundary, the presence of the Weddell–Scotia Confluence waters, and structured spatial variability in mixing between Winter Water and CDW. PCM offers a useful complement to existing expertise-driven approaches for characterising the physical configuration and variability of oceanographic regions, helping to identify coherent thermohaline structures and the boundaries between them

    Computational Physics on Graphics Processing Units

    Full text link
    The use of graphics processing units for scientific computations is an emerging strategy that can significantly speed up various different algorithms. In this review, we discuss advances made in the field of computational physics, focusing on classical molecular dynamics, and on quantum simulations for electronic structure calculations using the density functional theory, wave function techniques, and quantum field theory.Comment: Proceedings of the 11th International Conference, PARA 2012, Helsinki, Finland, June 10-13, 201

    Subependymal giant cell astrocytomas are characterized by mTORC1 hyperactivation, a very low somatic mutation rate, and a unique gene expression profile

    Get PDF
    Subependymal giant-cell astrocytomas (SEGAs) are slow-growing brain tumors that are a hallmark feature seen in 5–10% of patients with Tuberous Sclerosis Complex (TSC). Though histologically benign, they can cause serious neurologic symptoms, leading to death if untreated. SEGAs consistently show biallelic loss of TSC1 or TSC2. Herein, we aimed to define other somatic events beyond TSC1/TSC2 loss and identify potential transcriptional drivers that contribute to SEGA formation. Paired tumor-normal whole-exome sequencing was performed on 21 resected SEGAs from 20 TSC patients. Pathogenic variants in TSC1/TSC2 were identified in 19/21 (90%) SEGAs. Copy neutral loss of heterozygosity (size range: 2.2–46 Mb) was seen in 76% (16/21) of SEGAs (44% chr9q and 56% chr16p). An average of 1.4 other somatic variants (range 0–7) per tumor were identified, unlikely of pathogenic significance. Whole transcriptome RNA-sequencing analyses revealed 190 common differentially expressed genes in SEGA (n = 16, 13 from a prior study) in pairwise comparison to each of: low grade diffuse gliomas (n = 530) and glioblastoma (n = 171) from The Cancer Genome Atlas (TCGA) consortium, ganglioglioma (n = 10), TSC cortical tubers (n = 15), and multiple normal tissues. Among these, homeobox transcription factors (TFs) HMX3, HMX2, VAX1, SIX3; and TFs IRF6 and EOMES were all expressed >12-fold higher in SEGAs (FDR/q-value < 0.05). Immunohistochemistry supported the specificity of IRF6, VAX1, SIX3 for SEGAs in comparison to other tumor entities and normal brain. We conclude that SEGAs have an extremely low somatic mutation rate, suggesting that TSC1/TSC2 loss is sufficient to drive tumor growth. The unique and highly expressed SEGA-specific TFs likely reflect the neuroepithelial cell of origin, and may also contribute to the transcriptional and epigenetic state that enables SEGA growth following two-hit loss of TSC1 or TSC2 and mTORC1 activation

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

    Asymptomatic Plasmodium falciparum malaria prevalence among adolescents and adults in Malawi, 2015–2016

    Get PDF
    Malaria remains a significant cause of morbidity and mortality in Malawi, with an estimated 18–19% prevalence of Plasmodium falciparum in children 2–10 years in 2015–2016. While children report the highest rates of clinical disease, adults are thought to be an important reservoir to sustained transmission due to persistent asymptomatic infection. The 2015–2016 Malawi Demographic and Health Survey was a nationally representative household survey which collected dried blood spots from 15,125 asymptomatic individuals ages 15–54 between October 2015 and February 2016. We performed quantitative polymerase chain reaction on 7,393 samples, detecting an overall P. falciparum prevalence of 31.1% (SE = 1.1). Most infections (55.6%) had parasitemias ≤ 10 parasites/µL. While 66.2% of individuals lived in a household that owned a bed net, only 36.6% reported sleeping under a long-lasting insecticide-treated net (LLIN) the previous night. Protective factors included urbanicity, greater wealth, higher education, and lower environmental temperatures. Living in a household with a bed net (prevalence difference 0.02, 95% CI − 0.02 to 0.05) and sleeping under an LLIN (0.01; − 0.02 to 0.04) were not protective against infection. Our findings demonstrate a higher parasite prevalence in adults than published estimates among children. Understanding the prevalence and distribution of asymptomatic infection is essential for targeted interventions

    Does congenital deafness affect the structural and functional architecture of primary visual cortex?

    Get PDF
    Deafness results in greater reliance on the remaining senses. It is unknown whether the cortical architecture of the intact senses is optimized to compensate for lost input. Here we performed widefield population receptive field (pRF) mapping of primary visual cortex (V1) with functional magnetic resonance imaging (fMRI) in hearing and congenitally deaf participants, all of whom had learnt sign language after the age of 10 years. We found larger pRFs encoding the peripheral visual field of deaf compared to hearing participants. This was likely driven by larger facilitatory center zones of the pRF profile concentrated in the near and far periphery in the deaf group. pRF density was comparable between groups, indicating pRFs overlapped more in the deaf group. This could suggest that a coarse coding strategy underlies enhanced peripheral visual skills in deaf people. Cortical thickness was also decreased in V1 in the deaf group. These findings suggest deafness causes structural and functional plasticity at the earliest stages of visual cortex
    corecore